Maximizing Batch Crafting - Icy Mink 16 Feb 2021 (Corrections done 5 January 2025)

Suppose that there is an item you want to batch craft, B, that is crafted using n unique items, and you

have Iy inventory slots. Let di,ds,...,d, be the amount of a certain item used in the crafting where d;
is the 7th item in the list. Let s1,89,...,8, be how many of a certain item can be in an item stack. Let
c1,C2,...,Cy be the constants derived as such:
d;
C; = —
Sq

We will define a function I(k) that returns the amount of inventory slots used if you want to craft the item

B, k times:

n

I(k) =3 [eik]

i=1
The ceiling function is applied since having a single item requires an inventory slot. Now let us define the

function (k) as an approximation of I:
alk)=k- Z ¢
i=1

The properties of the ceiling function, namely that f(k) +1 > [f(k)] > f(k), we can apply this fact to get

the other approximation function S(k):

B(k) = I(k) = a(k)

So we know that the solution will be somewhere in this range. The inverse of the approximation functions
are as follows:

k k—n
= B'k)==—
D i1 Ci D i1 Ci

a”t(k) > I (k) > B (k)

a (k) =

We can now define an interval M:
M =87 (Io)], [a~ ' (Io)]]

The largest value of k such that I(k) < Iy, which would be I71(I), is within the interval M.

[ANECDOTE] Another approximation function uses the Fourier Series associated with the function. The

Fourier Series of [x] is:

1 1 X sin(27ix)
olmatg i) =5

If we generalize this for [cx] for any constant ¢ we get:

fex] n 1 LC i sin(2mcix)
axlreax+-+—-—) —
2 0w P ci



And thus an alternative approximation for (k) is:

1 ¢ = sin(27¢;ik)
[(k’)%f(k)zz Cik‘-i-g"‘r; (072
i=1 j=1 v

While this approximation is highly accurate, the infinite sum diverges so the upper bound would need to
be lowered, and finding a sufficient upper bound that is high enough for accuracy’s sake is difficult, and the
upper bound must be higher for a higher n. In conclusion, while this approximation is much more accurate,
the amount of computation is so high that it is not practical. Even if a program were written to compute

this, it would be absurdly slow, thus we will not use this approximation for solving this problem.



